A quadratically enriched Bézout theorem for tropical curves joint with Andrés Jaramillo Puentes

theorem

Sabrina Pauli

Universität Duisburg-Essen

Universität Bielefeld, 18.01.2023

Example: Lines on a smooth cubic surface

- \#complex lines $=27$ (Cayley-Salmon 1849)
theorem for tropical curves Sabrina Pauli
enumerative geometry

Bézout's theorem

Tropicalization
Tropical Bézout for curves

Enriched tropical curves

Generalizations

Figure: Clebsch cubic surface ${ }^{1}$

[^0]Bézout theorem for tropical curves

Sabrina Pauli

Example: Lines on a smooth cubic surface

■ \#complex lines $=27$ (Cayley-Salmon 1849)

- signed count of real lines $=3$ (Segre 1942)

Figure: Clebsch cubic surface ${ }^{1}$

[^1]Bézout theorem for tropical curves

Sabrina Pauli

Example: Lines on a smooth cubic surface

■ \#complex lines $=27$ (Cayley-Salmon 1849)
■ signed count of real lines $=3$ (Segre 1942)
■ over an arbitrary field k (Kass-Wickelgren 2017)

$$
15\langle 1\rangle+12\langle-1\rangle \in \mathrm{GW}(k)
$$

Figure: Clebsch cubic surface ${ }^{1}$

[^2]quadratically
enriched
Bézout
theorem for tropical curves

Sabrina Pauli
enumerative geometry

Bézout's theorem

Tropicalization
Tropical
Bézout for curves

Enriched tropical curves

Example: Lines on a smooth cubic surface

■ \#complex lines $=27$ (Cayley-Salmon 1849)
■ signed count of real lines $=3$ (Segre 1942)
■ over an arbitrary field k (Kass-Wickelgren 2017)

Figure: Clebsch cubic surface ${ }^{1}$

[^3]quadratically
enriched
Bézout theorem for tropical curves

Sabrina Pauli
enumerative geometry

Bézout's
theorem
Tropicalization
Tropical
Bézout for curves

Enriched tropical curves

Example: Lines on a smooth cubic surface

- \#complex lines $=27$ (Cayley-Salmon 1849)
- signed count of real lines $=3$ (Segre 1942)
- over an arbitrary field k (Kass-Wickelgren 2017)

This is independent of the choice of smooth cubic surface.

Figure: Clebsch cubic surface ${ }^{1}$

[^4]Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over k, \oplus, \otimes

Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over $\mathrm{k}, \oplus, \otimes$

- generators: $\langle a\rangle:=\left[a x^{2}\right]$ for $a \in k^{\times} /\left(k^{\times}\right)^{2}$
- relations:
$1\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$ for $a, b, a+b \in k^{\times}$
$2\langle a\rangle\langle b\rangle=\langle a b\rangle$ for $a, b \in k^{\times}$
$3\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h$ for $a \in k^{\times}$

Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over $\mathrm{k}, \oplus, \otimes$

- generators: $\langle a\rangle:=\left[a x^{2}\right]$ for $a \in k^{\times} /\left(k^{\times}\right)^{2}$
- relations:
$1\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$ for $a, b, a+b \in k^{\times}$
$2\langle a\rangle\langle b\rangle=\langle a b\rangle$ for $a, b \in k^{\times}$
$3\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h$ for $a \in k^{\times}$

Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over $\mathrm{k}, \oplus, \otimes$

- generators: $\langle a\rangle:=\left[a x^{2}\right]$ for $a \in k^{\times} /\left(k^{\times}\right)^{2}$
- relations:
$1\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$ for $a, b, a+b \in k^{\times}$
$2\langle a\rangle\langle b\rangle=\langle a b\rangle$ for $a, b \in k^{\times}$
$3\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h$ for $a \in k^{\times}$

Example

$\mathbb{C}^{\times} /\left(\mathbb{C}^{\times}\right)^{2} \cong\{1\}$
$\mathrm{GW}(\mathbb{C}) \cong \mathbb{Z}$

Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over $\mathrm{k}, \oplus, \otimes$

- generators: $\langle a\rangle:=\left[a x^{2}\right]$ for $a \in k^{\times} /\left(k^{\times}\right)^{2}$
- relations:
$1\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle$ for $a, b, a+b \in k^{\times}$
$2\langle a\rangle\langle b\rangle=\langle a b\rangle$ for $a, b \in k^{\times}$
$3\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h$ for $a \in k^{\times}$

Example

$\mathbb{C}^{\times} /\left(\mathbb{C}^{\times}\right)^{2} \cong\{1\}$
$\mathrm{GW}(\mathbb{C}) \cong \mathbb{Z}$

Example

$$
\begin{aligned}
& \mathbb{R}^{\times} /\left(\mathbb{R}^{\times}\right)^{2} \cong\{ \pm 1\} \\
& G W(\mathbb{R}) \cong \mathbb{Z}\left[C_{2}\right]
\end{aligned}
$$

Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over $\mathrm{k}, \oplus, \otimes$

- generators: $\langle a\rangle:=\left[a x^{2}\right]$ for $a \in k^{\times} /\left(k^{\times}\right)^{2}$
- relations:

$$
\begin{aligned}
& 1\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle \text { for } a, b, a+b \in k^{\times} \\
& \mathbf{2}\langle a\rangle\langle b\rangle=\langle a b\rangle \text { for } a, b \in k^{\times} \\
& \mathbf{3}\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h \text { for } a \in k^{\times}
\end{aligned}
$$

Example

$\mathbb{C}^{\times} /\left(\mathbb{C}^{\times}\right)^{2} \cong\{1\}$
$\mathrm{GW}(\mathbb{C}) \cong \mathbb{Z}$

Example

$$
\begin{aligned}
& \mathbb{R}^{\times} /\left(\mathbb{R}^{\times}\right)^{2} \cong\{ \pm 1\} \\
& G W(\mathbb{R}) \cong \mathbb{Z}\left[C_{2}\right]
\end{aligned}
$$

Example

$\mathbb{F}_{p}^{\times} /\left(\mathbb{F}_{p}^{\times}\right)^{2} \cong\{1, a\}$
$\operatorname{GW}\left(\mathbb{F}_{p}\right) \cong \frac{\mathbb{Z}[(a\rangle]}{\left(\langle a)^{2}-1,2(a)-2\right)}$

Let k be a field of characteristic $\neq 2$.

Definition: Grothendieck Witt ring of k

$\mathrm{GW}(\mathrm{k}):=$ group completion of semi-ring of isometry classes of non-degenerate quadratic forms over $\mathrm{k}, \oplus, \otimes$

- generators: $\langle a\rangle:=\left[a x^{2}\right]$ for $a \in k^{\times} /\left(k^{\times}\right)^{2}$
- relations:

$$
\begin{aligned}
& 1\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle a b(a+b)\rangle \text { for } a, b, a+b \in k^{\times} \\
& \mathbf{2}\langle a\rangle\langle b\rangle=\langle a b\rangle \text { for } a, b \in k^{\times} \\
& \mathbf{3}\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle=: h \text { for } a \in k^{\times}
\end{aligned}
$$

Example

$\mathbb{C}^{\times} /\left(\mathbb{C}^{\times}\right)^{2} \cong\{1\}$
$\mathrm{GW}(\mathbb{C}) \cong \mathbb{Z}$

Example

$\mathbb{F}_{p}^{\times} /\left(\mathbb{F}_{p}^{\times}\right)^{2} \cong\{1, a\}$
$\mathrm{GW}\left(\mathbb{F}_{p}\right) \cong \frac{\mathbb{Z}[(a)]}{\left(\langle a)^{2}-1,2(a)-2\right)}$

Example

$\mathbb{R}^{\times} /\left(\mathbb{R}^{\times}\right)^{2} \cong\{ \pm 1\}$
$\mathrm{GW}(\mathbb{R}) \cong \mathbb{Z}\left[C_{2}\right]$

Example

$\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2} \cong\{1, a, p, p a\}$
$\operatorname{GW}\left(\mathbb{Q}_{p}\right) \cong \frac{\operatorname{GW}\left(\mathbb{F}_{p}\right) \oplus \operatorname{GW}\left(\mathbb{F}_{p}\right)}{(h,-h)}$

- Enumerative geometry: Count of solutions to geometric questions ($k=\bar{k}$), e.g. number of lines on a smooth cubic surface $=27$
- Enumerative geometry: Count of solutions to geometric questions $(k=\bar{k})$, e.g. number of lines on a smooth cubic surface $=27$
- \mathbb{A}^{1}-enumerative geometry: give enumerative results over an arbitrary field k valued in $\mathrm{GW}(k)$, i.e. a quadratic form, e.g. $15\langle 1\rangle+12\langle-1\rangle \in \mathrm{GW}(k)$
- Enumerative geometry: Count of solutions to geometric questions $(k=\bar{k})$, e.g. number of lines on a smooth cubic surface $=27$
- \mathbb{A}^{1}-enumerative geometry: give enumerative results over an arbitrary field k valued in $\mathrm{GW}(k)$, i.e. a quadratic form, e.g. $15\langle 1\rangle+12\langle-1\rangle \in \mathrm{GW}(k)$
- Input comes from \mathbb{A}^{1}-homotopy theory/motivic homotopy theory $=$ homotopy theory on algebraic varieties over k (Morel-Voevodsky)
- Enumerative geometry: Count of solutions to geometric questions ($k=\bar{k}$), e.g. number of lines on a smooth cubic surface $=27$
- \mathbb{A}^{1}-enumerative geometry: give enumerative results over an arbitrary field k valued in $\mathrm{GW}(k)$, i.e. a quadratic form, e.g. $15\langle 1\rangle+12\langle-1\rangle \in \mathrm{GW}(k)$
- Input comes from \mathbb{A}^{1}-homotopy theory/motivic homotopy theory $=$ homotopy theory on algebraic varieties over k (Morel-Voevodsky)
- A powerful tool to solve problems in enumerative geometry is to use tropical geometry: tropicalalization turns algebraic varieties into polytopes. This allows to solve problems in enumerative geometry using merely combinatorics.
- Enumerative geometry: Count of solutions to geometric questions ($k=\bar{k}$), e.g. number of lines on a smooth cubic surface $=27$
- \mathbb{A}^{1}-enumerative geometry: give enumerative results over an arbitrary field k valued in $\mathrm{GW}(k)$, i.e. a quadratic form, e.g. $15\langle 1\rangle+12\langle-1\rangle \in \mathrm{GW}(k)$
- Input comes from \mathbb{A}^{1}-homotopy theory/motivic homotopy theory $=$ homotopy theory on algebraic varieties over k (Morel-Voevodsky)
- A powerful tool to solve problems in enumerative geometry is to use tropical geometry: tropicalalization turns algebraic varieties into polytopes. This allows to solve problems in enumerative geometry using merely combinatorics.
- Today: We use tropicalization for a problem in \mathbb{A}^{1}-enumerative geometry.

$$
\begin{aligned}
& k=\mathbb{C} \\
& C_{1}=V\left(F_{1}\right) \subset \mathbb{P}_{\mathbb{C}}^{2}, d_{1}=\operatorname{deg} F_{1} \\
& C_{2}=V\left(F_{2}\right) \subset \mathbb{P}_{\mathbb{C}}^{2}, d_{2}=\operatorname{deg} F_{2}
\end{aligned}
$$

Bézout's
theorem

Tropicalization

Tropical

Bézout for

curves

Enriched
tropical curves
Generalizations

Bézout's theorem for curves over $k=\mathbb{C}$

$$
\sum_{p \in C_{1} \cap C_{2}} 1=d_{1} \cdot d_{2}
$$

Today all intersections are transverse.

$$
\begin{aligned}
& k=\mathbb{R} \\
& C_{1}=V\left(F_{1}\right) \subset \mathbb{P}_{\mathbb{R}}^{2}, d_{1}=\operatorname{deg} F_{1} \\
& C_{2}=V\left(F_{2}\right) \subset \mathbb{P}_{\mathbb{R}}^{2}, d_{2}=\operatorname{deg} F_{2}
\end{aligned}
$$

Bézout's

theorem
Tropicalization
Tropical
Bézout for

curves

Enriched
tropical curves
Generalizations

Bézout's theorem for curves over $k=\mathbb{R}$

$$
\begin{aligned}
& k=\mathbb{R} \\
& C_{1}=V\left(F_{1}\right) \subset \mathbb{P}_{\mathbb{R}}^{2}, d_{1}=\operatorname{deg} F_{1} \\
& C_{2}=V\left(F_{2}\right) \subset \mathbb{P}_{\mathbb{R}}^{2}, d_{2}=\operatorname{deg} F_{2}
\end{aligned}
$$

Bézout's
theorem

Tropicalization

Tropical
Bézout for curves

Enriched tropical curves

Bézout's theorem for curves over $k=\mathbb{R}$

If $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}} \operatorname{sign}\left(\operatorname{det} \operatorname{Jac}\left(F_{1}, F_{2}\right)(p)\right)=0 .
$$

$$
\begin{aligned}
& k=\text { arbitrary } \\
& C_{1}=V\left(F_{1}\right) \subset \mathbb{P}_{k}^{2}, d_{1}=\operatorname{deg} F_{1} \\
& C_{2}=V\left(F_{2}\right) \subset \mathbb{P}_{k}^{2}, d_{2}=\operatorname{deg} F_{2}
\end{aligned}
$$

Bézout's theorem for curves over k (McKean 2021)

If $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}} \operatorname{Tr}_{k(p) / k}\left\langle\operatorname{det} \operatorname{Jac}\left(F_{1}, F_{2}\right)(p)\right\rangle=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \operatorname{GW}(k)
$$

Here, $\operatorname{Tr}_{L / k}\langle a\rangle$ is the quadratic form

$$
L \xrightarrow{\langle a\rangle} L \xrightarrow{\operatorname{Tr}_{L / k}} k
$$

for a finite separable field extension L / k.

A
quadratically enriched
Bézout theorem for tropical curves

Sabrina Pauli
enumerative geometry

Bézout's
theorem
Tropicalization
Tropical
Bézout for
curves
Enriched
tropical curves
Generalizations

Definition (the field of Puiseux series over k)

$$
\begin{aligned}
k\{\{t\}\}:= & \bigcup_{n \geq 1} k\left(\left(t^{\frac{1}{n}}\right)\right) \\
= & \left\{a_{0} t^{q_{0}}+a_{1} t^{q_{1}}+\ldots \mid a_{i} \in k,\right. \\
& \left.q_{i} \in \mathbb{Q} \text { have a common denominator and } q_{0}<q_{1}<\ldots\right\}
\end{aligned}
$$

Lemma (Markwig-Payne-Shaw)

$\mathrm{GW}(k\{\{t\}\}) \cong \mathrm{GW}(k)$

Proof.

A quadratically enriched
Bézout theorem for tropical curves

Sabrina Pauli \mathbb{A}^{1} enumerative geometry

Bézout's theorem

Tropicalization
Tropical
Bézout for
curves
Enriched
tropical qurves

Definition (the field of Puiseux series over k)

$$
\begin{aligned}
k\{\{t\}\}:= & \bigcup_{n \geq 1} k\left(\left(t^{\frac{1}{n}}\right)\right) \\
= & \left\{a_{0} t^{q_{0}}+a_{1} t^{q_{1}}+\ldots \mid a_{i} \in k,\right. \\
& \left.q_{i} \in \mathbb{Q} \text { have a common denominator and } q_{0}<q_{1}<\ldots\right\}
\end{aligned}
$$

Lemma (Markwig-Payne-Shaw)

$\mathrm{GW}(k\{\{t\}\}) \cong \mathrm{GW}(k)$

Proof.

1 have bijection $k\{\{t\}\}^{\times} /\left(k\{\{t\}\}^{\times}\right)^{2} \cong k^{\times} /\left(k^{\times}\right)^{2}$ defined by

$$
a_{0} t^{q_{0}}+a_{1} t^{q_{1}}+\ldots \mapsto a_{0}
$$

$$
\begin{aligned}
k\{\{t\}\}:= & \bigcup_{n \geq 1} k\left(\left(t^{\frac{1}{n}}\right)\right) \\
= & \left\{a_{0} t^{q_{0}}+a_{1} t^{q_{1}}+\ldots \mid a_{i} \in k,\right. \\
& \left.q_{i} \in \mathbb{Q} \text { have a common denominator and } q_{0}<q_{1}<\ldots\right\}
\end{aligned}
$$

$\mathrm{GW}(k\{\{t\}\}) \cong \mathrm{GW}(k)$

Proof.

1 have bijection $k\{\{t\}\}^{\times} /\left(k\{\{t\}\}^{\times}\right)^{2} \cong k^{\times} /\left(k^{\times}\right)^{2}$ defined by $a_{0} t^{q_{0}}+a_{1} t^{q_{1}}+\ldots \mapsto a_{0}$

2 this defines an isomorphism $\left\langle a_{0} t^{q_{0}}+\ldots\right\rangle \mapsto\left\langle a_{0}\right\rangle$ (respects the relations in the Grothendieck-Witt rings)
quadratically enriched Bézout theorem for tropical curves Sabrina Pauli

enumerative

 geometryBézout's theorem

Tropicalization

Tropical

Bézout for

 curvesEnriched
tropical curves
Generalizations

Let

$$
F(x, y)=a(t) x+b(t) y+c(t) \in k\{\{t\}\}[x, y]
$$

with

$$
\begin{aligned}
& a(t)=a_{0} t^{q_{a_{0}}}+a_{1} t^{q_{a_{1}}}+\ldots \\
& b(t)=b_{0} t^{q_{b_{0}}}+b_{1} t^{q_{b_{1}}}+\ldots \\
& c(t)=c_{0} t^{q_{c_{0}}}+c_{1} t^{q_{c_{1}}}+\ldots
\end{aligned}
$$

Want to find
$x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)=y_{0} t^{-q_{y_{0}}}+\ldots \in \overline{k\{\{t\}\}}$ such that

$$
\begin{aligned}
0=F(x(t), y(t)) & =a_{0} x_{0} t^{q_{a_{0}}-q_{x_{0}}}+\text { h.o.t. } \\
& +b_{0} y_{0} t^{q_{b_{0}}-q_{y_{0}}}+\text { h.o.t. } \\
& +c_{0} t^{q_{c_{0}}}+\text { h.o.t. }
\end{aligned}
$$

Want to find
$x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)=y_{0} t^{-q_{y_{0}}}+\ldots \in \overline{k\{\{t\}\}}$ such that

$$
\begin{aligned}
0=F(x(t), y(t)) & =a_{0} x_{0} t^{q_{a_{0}}-q_{x_{0}}}+\text { h.o.t. } \\
& +b_{0} y_{0} t^{q_{b_{0}}-q_{y_{0}}}+\text { h.o.t. } \\
& +c_{0} t^{q_{c_{0}}}+\text { h.o.t. }
\end{aligned}
$$

This can be solved exactly when

$$
\min \left(q_{a_{0}}-q_{x_{0}}, q_{b_{0}}-q_{y_{0}}, q_{c_{0}}\right)
$$

is attained at least twice

Want to find

$$
\begin{aligned}
& x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)= \\
& \qquad \begin{aligned}
0=F(x(t), y(t)) & =a_{0} x_{0} t^{q_{y_{0}}}+\ldots \in \overline{k\{\{t\}\}} \text { such that } \\
& +b_{0} y_{0} t^{q_{x_{0}}}-a_{y_{0}}+\text { h.o.t. } \\
& +c_{0} t^{q_{c_{0}}}+\text { h.o.t. }
\end{aligned}
\end{aligned}
$$

This can be solved exactly when

$$
\max \left(-\left(q_{a_{0}}-q_{x_{0}}\right),-\left(q_{b_{0}}-q_{y_{0}}\right),-q_{c_{0}}\right)
$$

is attained at least twice \rightsquigarrow tropical line.
$F(x, y)=\sum a_{i j}(t) x^{i} y^{j} \in k\{\{t\}\}[x, y]$ of degree $d \geq 1$ with $a_{i j}(t)=a_{i j, 0} t^{q_{j, 0}}+\ldots \in k\{\{t\}\}$ has a zero $\left(x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)=y_{0} t^{-q_{y_{0}}}+\ldots\right)$ exactly when

$$
\max _{i j}\left(i q_{x_{0}}+j q_{y_{0}}-q_{i j, 0}\right)
$$

is attained twice.
$F(x, y)=\sum a_{i j}(t) x^{i} y^{j} \in k\{\{t\}\}[x, y]$ of degree $d \geq 1$ with $a_{i j}(t)=a_{i j, 0} t^{q_{j, 0}}+\ldots \in k\{\{t\}\}$ has a zero
$\left(x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)=y_{0} t^{-q_{y_{0}}}+\ldots\right)$ exactly when

$$
\max _{i j}\left(i q_{x_{0}}+j q_{y_{0}}-q_{i j, 0}\right)
$$

is attained twice.
We call the locus where the maximum is attained at least twice a tropical curve of degree d.
$F(x, y)=\sum a_{i j}(t) x^{i} y^{j} \in k\{\{t\}\}[x, y]$ of degree $d \geq 1$ with $a_{i j}(t)=a_{i j, 0} t^{q_{j, 0}}+\ldots \in k\{\{t\}\}$ has a zero
$\left(x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)=y_{0} t^{-q_{y_{0}}}+\ldots\right)$ exactly when

$$
\max _{i j}\left(i q_{x_{0}}+j q_{y_{0}}-q_{i j, 0}\right)
$$

is attained twice.
We call the locus where the maximum is attained at least twice a tropical curve of degree d.

Figure: Tropical curves of degree 1, 2 and 3
$F(x, y)=\sum a_{i j}(t) x^{i} y^{j} \in k\{\{t\}\}[x, y]$ of degree $d \geq 1$ with $a_{i j}(t)=a_{i j, 0} t^{q_{j, 0}}+\ldots \in k\{\{t\}\}$ has a zero
$\left(x(t)=x_{0} t^{-q_{x_{0}}}+\ldots, y(t)=y_{0} t^{-q_{y_{0}}}+\ldots\right)$ exactly when

$$
\max _{i j}\left(i q_{x_{0}}+j q_{y_{0}}-q_{i j, 0}\right)
$$

is attained twice.
We call the locus where the maximum is attained at least twice a tropical curve of degree d.

Figure: Tropical curves of degree 1, 2 and 3

Observe: degree of a tropical curve $=$ \#unbounded edges pointing to the left, down and to the upper right
$F_{1}, F_{2} \in k\{\{t\}\}[x, y]$ of degree d_{1} and $d_{2} \rightsquigarrow$ tropical curves C_{1}, C_{2}, $p \in C_{1} \cap C_{2}$

Definition (tropical intersection multiplicity)

$\operatorname{mult}_{p}\left(C_{1}, C_{2}\right):=\#$ points in $\left\{F_{1}=F_{2}=0\right\}$ that "tropicalize" to p

Bézout for tropical curves (Sturmfels)

Let C_{1} and C_{2} be two tropical curves of degree d_{1} and d_{2}, respectively. Then

$$
\sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right)=d_{1} \cdot d_{2} .
$$

Bézout's theorem

Tropicalization
Tropical Bézout for curves
$F_{1}, F_{2} \in k\{\{t\}\}[x, y]$ of degree d_{1} and $d_{2} \rightsquigarrow$ tropical curves C_{1}, C_{2}, $p \in C_{1} \cap C_{2}$

Definition (tropical intersection multiplicity)
$\operatorname{mult}_{p}\left(C_{1}, C_{2}\right):=\#$ points in $\left\{F_{1}=F_{2}=0\right\}$ that "tropicalize" to p

Bézout for tropical curves (Sturmfels)

Let C_{1} and C_{2} be two tropical curves of degree d_{1} and d_{2}, respectively. Then

$$
\sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right)=d_{1} \cdot d_{2} .
$$

Example

Example

Example

A
subdivision S of $\Delta_{d}:=\operatorname{Conv}\{(0,0),(d, 0),(0, d)\}$

tropical curve C	dual subdivision S
vertices of C	maximal cells in S
edges of C	edges of S
components of $\mathbb{R}^{2} \backslash C$	vertices of S

such that

- all inclusions are inverted

■ dual edges are orthogonal

Figure: A tropical conic with its dual subdivision

A
subdivision S of $\Delta_{d}:=\operatorname{Conv}\{(0,0),(d, 0),(0, d)\}$

tropical curve C	dual subdivision S
vertices of C	maximal cells in S
edges of C	edges of S
components of $\mathbb{R}^{2} \backslash C$	vertices of S

such that

- all inclusions are inverted

■ dual edges are orthogonal

Figure: A tropical conic with its dual subdivision
C_{1} and C_{2} tropical curves of degree d_{1} respectively d_{2} S dual subdivision of $C_{1} \cup C_{2}$ Intersection points of C_{1} and $C_{2} \longleftrightarrow$ Parallelograms in S

Lemma

mult $_{p}\left(C_{1}, C_{2}\right):=$ Area(dual parallelogram)
Proof of Bézout for tropical curves.

C_{1} and C_{2} tropical curves of degree d_{1} respectively d_{2} S dual subdivision of $C_{1} \cup C_{2}$ Intersection points of C_{1} and $C_{2} \longleftrightarrow$ Parallelograms in S

Lemma

mult $_{p}\left(C_{1}, C_{2}\right):=$ Area(dual parallelogram)

Proof of Bézout for tropical curves.

$$
\sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right)
$$

enumerative geometry
C_{1} and C_{2} tropical curves of degree d_{1} respectively d_{2} S dual subdivision of $C_{1} \cup C_{2}$ Intersection points of C_{1} and $C_{2} \longleftrightarrow$ Parallelograms in S

Tropical Bézout for curves

Enriched tropical curves Generalizations
enumerative geometry

Bézout's
theorem
Tropicalization

㐁

Lemma

$\operatorname{mult}_{p}\left(C_{1}, C_{2}\right):=$ Area(dual parallelogram)

Proof of Bézout for tropical curves.

$$
\begin{aligned}
& \sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right) \\
= & \operatorname{Area}\left(\Delta_{d_{1}+d_{2}}\right)-\operatorname{Area}\left(\Delta_{d_{1}}\right)-\operatorname{Area}\left(\Delta_{d_{2}}\right)
\end{aligned}
$$

C_{1} and C_{2} tropical curves of degree d_{1} respectively d_{2} S dual subdivision of $C_{1} \cup C_{2}$ Intersection points of C_{1} and $C_{2} \longleftrightarrow$ Parallelograms in S

Tropical Bézout for curves

Enriched tropical curves Generalizations
enumerative geometry

Bézout's
theorem
Tropicalization

㐁

Lemma

$\operatorname{mult}_{p}\left(C_{1}, C_{2}\right):=$ Area(dual parallelogram)

Proof of Bézout for tropical curves.

$$
\begin{aligned}
& \sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right) \\
= & \operatorname{Area}\left(\Delta_{d_{1}+d_{2}}\right)-\operatorname{Area}\left(\Delta_{d_{1}}\right)-\operatorname{Area}\left(\Delta_{d_{2}}\right)
\end{aligned}
$$

Lemma

mult $_{p}\left(C_{1}, C_{2}\right):=$ Area(dual parallelogram)

Proof of Bézout for tropical curves.

$$
\begin{aligned}
& \sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right) \\
= & \operatorname{Area}\left(\Delta_{d_{1}+d_{2}}\right)-\operatorname{Area}\left(\Delta_{d_{1}}\right)-\operatorname{Area}\left(\Delta_{d_{2}}\right)
\end{aligned}
$$

C_{1} and C_{2} tropical curves of degree d_{1} respectively d_{2} S dual subdivision of $C_{1} \cup C_{2}$ Intersection points of C_{1} and $C_{2} \longleftrightarrow$ Parallelograms in S

Tropical Bézout for curves

Enriched tropical curves Generalizations
enumerative geometry

Bézout's
theorem
Tropicalization㐁
$\operatorname{mult}_{p}\left(C_{1}, C_{2}\right):=$ Area(dual parallelogram)
C_{1} and C_{2} tropical curves of degree d_{1} respectively d_{2} S dual subdivision of $C_{1} \cup C_{2}$ Intersection points of C_{1} and $C_{2} \longleftrightarrow$ Parallelograms in S

Lemma

Proof of Bézout for tropical curves.

$$
\begin{aligned}
& \sum_{p \in C_{1} \cap C_{2}} \operatorname{mult}_{p}\left(C_{1}, C_{2}\right) \\
= & \operatorname{Area}\left(\Delta_{d_{1}+d_{2}}\right)-\operatorname{Area}\left(\Delta_{d_{1}}\right)-\operatorname{Area}\left(\Delta_{d_{2}}\right) \\
= & \frac{\left(d_{1}+d_{2}\right)^{2}}{2}-\frac{d_{1}^{2}}{2}-\frac{d_{2}^{2}}{2}=d_{1} \cdot d_{2}
\end{aligned}
$$

$$
F_{1}, F_{2} \in k\{\{t\}\}[x, y] \rightsquigarrow \text { tropical curves } C_{1}, C_{2}, p \in C_{1} \cap C_{2}
$$

Definition: enriched intersection multiplicity (Jaramillo Puentes - P.)

$$
\widetilde{\operatorname{mult}}_{p}\left(C_{1}, C_{2}\right):=\operatorname{Tr}_{E / k\{\{t\}\}}\left(\left\langle\operatorname{det} \operatorname{Jac}\left(F_{1}, F_{2}\right)(z)\right\rangle\right) \in \operatorname{GW}(k\{\{t\}\})
$$

where z is a zero of F_{1} and F_{2} that tropicalizes to p and E is the $k\{\{t\}\}$-algebra defined by all such z.

Definition: Enriched tropical curve (Viro, Markwig-Payne-Shaw, Jaramillo Puentes-P.)

tropical curve with coefficients $a \in k^{\times} /\left(k^{\times}\right)^{2}$ assigned to each component/each vertex in dual subdivision

Figure: enriched tropical conic

Say $v \in \mathbb{Z}^{2}$ is odd if $v=(1,1) \in(\mathbb{Z} / 2)^{2}$.
Theorem (Jaramillo Puentes - P.)
$P=$ parallelogram dual to $p \in C_{1} \cap C_{2}$ in dual subdivision of $C_{1} \cup C_{2}$

$$
\widetilde{\text { mult }}_{p}\left(C_{1}, C_{2}\right)=\sum_{v \in V(P) \text { odd }}\left\langle\epsilon_{P}(v) a_{v}\right\rangle+\frac{\operatorname{Area}(P)-\#\{v \in V(P) \text { odd }\}}{2} \cdot h
$$

$a_{v}=$ coefficient of the vertex v
$\epsilon_{P}(v)= \begin{cases}+1 & \text { if first } C_{1} \text { then } C_{2} \\ -1 & \text { if first } C_{2} \text { then } C_{1}\end{cases}$
when walking around v inside of P anticlockwise

Enriched tropical curves

Say $v \in \mathbb{Z}^{2}$ is odd if $v=(1,1) \in(\mathbb{Z} / 2)^{2}$.
Theorem (Jaramillo Puentes - P.)
$P=$ parallelogram dual to $p \in C_{1} \cap C_{2}$ in dual subdivision of $C_{1} \cup C_{2}$

$$
{\widetilde{\text { mult }_{p}}}_{p}\left(C_{1}, C_{2}\right)=\sum_{v \in V(P) \text { odd }}\left\langle\epsilon_{P}(v) a_{v}\right\rangle+\frac{\operatorname{Area}(P)-\#\{v \in V(P) \text { odd }\}}{2} \cdot h
$$

$a_{v}=$ coefficient of the vertex v
$\epsilon_{P}(v)= \begin{cases}+1 & \text { if first } C_{1} \text { then } C_{2} \\ -1 & \text { if first } C_{2} \text { then } C_{1}\end{cases}$
when walking around v inside of P anticlockwise

Example

$$
\text { - } \widetilde{\text { mult }}_{p}\left(C_{1}, C_{2}\right)=\left\langle-a_{v}\right\rangle
$$

Example

- $\widetilde{m u l t}_{p}\left(C_{1}, C_{2}\right)=\left\langle-a_{v}\right\rangle$
- $\widetilde{\text { mult }}_{p}\left(C_{1}, C_{2}\right)+\widetilde{\text { mult }_{q}}\left(C_{1}, C_{2}\right)$ $=\left\langle-a_{v}\right\rangle+\left\langle a_{v}\right\rangle=h \in \operatorname{GW}(k)$

Corollary: Quadratically enriched Bézout for tropical curves

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}}{\widetilde{m u l t_{p}}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \operatorname{GW}(k)
$$

Corollary: Quadratically enriched Bézout for tropical curves

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}}{\widetilde{m u l t_{p}}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \operatorname{GW}(k)
$$

Sabrina Pauli

$$
\begin{aligned}
& \widetilde{\operatorname{mult}}_{p_{1}}\left(C_{1}, C_{2}\right)=\left\langle-a_{v_{1}}\right\rangle \\
& \widetilde{\operatorname{mult}_{p_{2}}}\left(C_{1}, C_{2}\right)=\left\langle a_{v_{1}}\right\rangle+\left\langle a_{v_{2}}\right\rangle
\end{aligned}
$$

Corollary: Quadratically enriched Bézout for tropical curves

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}}{\widetilde{m u l t_{p}}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \operatorname{GW}(k)
$$

Sabrina Pauli

\mathbb{A}^{1}
enumerative geometry

Bézout's

theorem
Tropicalization
Tropical
Bézout for curves

Enriched tropical curves Generalizations

$$
\begin{aligned}
& \widetilde{\operatorname{mult}}_{p_{1}}\left(C_{1}, C_{2}\right)=\left\langle-a_{v_{1}}\right\rangle \\
& \widetilde{\operatorname{mult}}_{p_{2}}\left(C_{1}, C_{2}\right)=\left\langle a_{v_{1}}\right\rangle+\left\langle a_{v_{2}}\right\rangle \\
& \widetilde{\operatorname{mult}}_{p_{3}}\left(C_{1}, C_{2}\right)=\left\langle-a_{v_{2}}\right\rangle+h
\end{aligned}
$$

Corollary: Quadratically enriched Bézout for tropical curves
Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

Corollary: Quadratically enriched Bézout for tropical curves
Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

A quadratically enriched
Bézout theorem for tropical curves

Sabrina Pauli

Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}} \widetilde{\operatorname{mult}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \mathrm{GW}(k)
$$

Proof.

If $d_{1}+d_{2} \equiv 1 \bmod 2$ then there are no odd points on the boundary of $\Delta_{d_{1}+d_{2}}$.

Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}}{\widetilde{\operatorname{mult}_{p}}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \mathrm{GW}(k)
$$

If $d_{1}+d_{2} \equiv 1 \bmod 2$ then there are no odd points on the boundary of $\Delta_{d_{1}+d_{2}}$.

Let v be a lattice point in the interior of $\Delta_{d_{1}+d_{2}}$. Then

Proof.

Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}}{\widetilde{\operatorname{mult}_{p}}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \mathrm{GW}(k)
$$

Proof.

If $d_{1}+d_{2} \equiv 1 \bmod 2$ then there are no odd points on the boundary of $\Delta_{d_{1}+d_{2}}$.

Let v be a lattice point in the interior of $\Delta_{d_{1}+d_{2}}$. Then
1 \# parallelograms corresponding to an intersection with vertex v is even.

Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume $d_{1}+d_{2} \equiv 1 \bmod 2$, then

$$
\sum_{p \in C_{1} \cap C_{2}}{\widetilde{\operatorname{mult}_{p}}}_{p}\left(C_{1}, C_{2}\right)=\frac{d_{1} \cdot d_{2}}{2} \cdot h \in \mathrm{GW}(k)
$$

Proof.

If $d_{1}+d_{2} \equiv 1 \bmod 2$ then there are no odd points on the boundary of $\Delta_{d_{1}+d_{2}}$.

Let v be a lattice point in the interior of $\Delta_{d_{1}+d_{2}}$. Then
1 \# parallelograms corresponding to an intersection with vertex v is even.
2 \# $\left\{P: v\right.$ vertex of $\left.P, \epsilon_{P}(v)=+1\right\}$
$=\#\left\{P: v\right.$ vertex of $\left.P, \epsilon_{P}(v)=-1\right\}$
Now the relation $\left\langle a_{v}\right\rangle+\left\langle-a_{v}\right\rangle=h$ in GW (k) implies the corollary.

- Can define enriched tropical hypersrufaces in any dimension \rightsquigarrow enriched tropical Bézout (not just for curves) \Rightarrow new proof of Bézout's theorem enriched in GW(k)
- Can define enriched tropical hypersrufaces in any dimension \rightsquigarrow enriched tropical Bézout (not just for curves) \Rightarrow new proof of Bézout's theorem enriched in GW(k)

■ Can count intersections in any toric variety \rightsquigarrow enriched Bernstein-Kushnirenko theorem.

- Can define enriched tropical hypersrufaces in any dimension \rightsquigarrow enriched tropical Bézout (not just for curves) \Rightarrow new proof of Bézout's theorem enriched in GW(k)

■ Can count intersections in any toric variety \rightsquigarrow enriched Bernstein-Kushnirenko theorem.

■ Can also say something about the possible counts in non-relatively orientable case (e.g. when $d_{1}+d_{2} \equiv 0 \bmod 2$).

- Can define enriched tropical hypersrufaces in any dimension \rightsquigarrow enriched tropical Bézout (not just for curves) \Rightarrow new proof of Bézout's theorem enriched in GW(k)

■ Can count intersections in any toric variety \rightsquigarrow enriched Bernstein-Kushnirenko theorem.

■ Can also say something about the possible counts in non-relatively orientable case (e.g. when $d_{1}+d_{2} \equiv 0 \bmod 2$).

THANK YOU!

[^0]: ${ }^{1}$ Model in the collection of mathematical models and instruments, Georg-August-Universität Göttingen. By Oliver Zauzig. Published under CC BY-SA 3.0 on universitaetssammlungen.de

[^1]: ${ }^{1}$ Model in the collection of mathematical models and instruments, Georg-August-Universität Göttingen. By Oliver Zauzig. Published under CC BY-SA 3.0 on universitaetssammlungen.de

[^2]: ${ }^{1}$ Model in the collection of mathematical models and instruments, Georg-August-Universität Göttingen. By Oliver Zauzig. Published under CC BY-SA 3.0 on universitaetssammlungen.de

[^3]: ${ }^{1}$ Model in the collection of mathematical models and instruments, Georg-August-Universität Göttingen. By Oliver Zauzig. Published under CC BY-SA 3.0 on universitaetssammlungen.de

[^4]: ${ }^{1}$ Model in the collection of mathematical models and instruments, Georg-August-Universität Göttingen. By Oliver Zauzig. Published under CC BY-SA 3.0 on universitaetssammlungen.de

