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Input comes from Al-homotopy theory/motivic homotopy
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(Morel-Voevodsky)

A powerful tool to solve problems in enumerative geometry is to
use tropical geometry: tropicalalization turns algebraic varieties
into polytopes. This allows to solve problems in enumerative
geometry using merely combinatorics.

Today: We use tropicalization for a problem in Al-enumerative
geometry.
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If di +d» =1 mod 2, then

Z sign(det Jac(F1, F2)(p)) = 0.
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Sabrina Pauli C2 = V(F2) C ]P)i, d2 = deg F2

Bézout's theorem for curves over k (McKean 2021)

If di +dr =1 mod 2, then

Bézout's
theorem

> Tripyk(det Jac(F, F2)(p)) - h € GW(k).

peCGinNG

-
2

Here, Tr; /. (a) is the quadratic form

LA T

for a finite separable field extension L/k.
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k{{t}} = k((t7))

n>1
:{aotq° +art? + ... \a,- € k,
gi € Q have a common denominator and qo < q1 < ...}

Lemma (Markwig-Payne-Shaw)
GW(k{{t}}) = GW(k)

have bijection k{{t}}* /(k{{t}}*)? = k> /(k*)? defined by
ot + a1t + ... ag
this defines an isomorphism (agt® + ...) — (ap) (respects the
relations in the Grothendieck-Witt rings)
O
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quadr:tically F(x,y) = a;(t)x'y’ € k{{t}}[x,y] of degree d > 1 with
Spdched aji(t) = ajjot¥o + ... € k{{t}} has a zero

tthelorelm for ( (

ropical curves

x(t) = xot™ %0 4+ ..., y(t) = yot~ % +...) exactly when
max(iqx +.jdy = dij0)

is attained twice.

Tropicalization
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ajj(t) = ajjot%° + ... € k{{t}} has a zero
x(t) = xot™%0 + ..., y(t) = yot~% +...) exactly when

m;X(iqu +Jay, — gij.0)

is attained twice.

We call the locus where the maximum is attained at least twice
a tropical curve of degree d.

Figure: Tropical curves of degree 1, 2 and 3

Observe: degree of a tropical curve = #unbounded edges
pointing to the left, down and to the upper right
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Bézout for tropical curves (Sturmfels)

Let C; and G be two tropical curves of degree d; and ds,
respectively. Then

Z multp(Cl, C2) =d; - d>.
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Figure: A tropical conic with its dual subdivision
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Enriched

tropical curves

Fi, F> € k{{t}}[x, y] ~ tropical curves C;, G, p€ G N G

Definition: enriched intersection multiplicity (Jaramillo Puentes - P.)

mult,(Cr, G) = Tre igqey) ((det Jac(Fr, F2)(2))) € GW(k{{t}})

where z is a zero of F; and F; that tropicalizes to p and E is the
k{{t}}-algebra defined by all such z.
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Enriched
tropical curves

Definition: Enriched tropical curve (Viro, Markwig-Payne-Shaw,

Jaramillo Puentes-P.)

tropical curve with coefficients a € k* /(k*)? assigned to each
component/each vertex in dual subdivision

ao2
a1l
401
L) aio axo

Figure: enriched tropical conic

15/19



A
el Say v c 72 is odd if v = (1,1) € (Z/2)%
Bézout
theorem for

Theorem (Jaramillo Puentes - P.)

tropical curves

Sebrine fadl P = parallelogram dual to p € G; N G, in dual subdivision of G; U G,
mult,(Ci, G) = S (er(van) + Area(P) — #{; € V(P) odd}

veV/(P) odd

a, —=coefficient of the vertex v
+1 if first C; then G

—1 if first G then G
when walking around v inside of P anticlockwise

ep(v) =

Enriched
tropical curves
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Enriched
tropical curves

Say v € Z? is odd if v = (1,1) € (Z/2)2.

Theorem (Jaramillo Puentes - P.)

P = parallelogram dual to p € ¢G; N G in dual subdivision of G U G

Area(P) — #{v € V(P) odd}

mt,,(ch G) = Z (er(v)av) + 2

veV/(P) odd

h

a, =coefficient of the vertex v

+1 if first C; then G

—1 if first G then G

when walking around v inside of P anticlockwise

ep(v) =
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Say v € Z? is odd if v = (1,1) € (Z/2)2.

Theorem (Jaramillo Puentes - P.)

P = parallelogram dual to p € ¢G; N G in dual subdivision of G U G

miit(CL G = Y (er(v)a) + P #lv € VIP) odd}

2
veV/(P) odd

a, —=coefficient of the vertex v
+1 if first C; then G

—1 if first G then G
when walking around v inside of P anticlockwise

E[ (] multp(Cl, G) = (—a,)
« 9 m mult,(Cy, Go) + multy(Cr, Co)
( 1 = () (ay) = h e GW(R)

ep(v) =

16/19



A
quadratically
enriched
Bézout CZ
theorem for
tropical curves

Sabrina Pauli

Enriched

tropical curves

Corollary: Quadratically enriched Bézout for tropical curves

Assume di +dr =1 mod 2, then

Z r?u/ltp(Cl, C2) =

peCiNG

dlédz - h e GW(k)

17/19



A
quadratically
enriched
Bézout CZ
theorem for

tropical curves

mult,, (Ci, G) = (—ay,)

Sabrina Pauli

Enriched
tropical curves

Corollary: Quadratically enriched Bézout for tropical curves

Assume di +dr =1 mod 2, then

dlédz - h e GW(k)

Z r?u/ltp(Cl, C2) =

peCiNG

17/19



A
quadratically
enriched
Bézout
theorem for
tropical curves

Sabrina Pauli

Enriched
tropical curves

mult,, (Ci, G) = (—ay,)

r;\uTtpz(Cly C2) = <‘9V1> + <aV2>

Corollary: Quadratically enriched Bézout for tropical curves

Assume di +dr =1 mod 2, then

Y multy(G, G) = dlédz
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r;\u/ltpl(cla G) = (—ay)
r;\uTtpz(Cly C2) = <‘9V1> + <aV2>

mult,,(Cr, G) = (—ay,) + h

Corollary: Quadratically enriched Bézout for tropical curves

Assume di +dr =1 mod 2, then

— d; - d
Z multp(Cl,C2)= 12 2
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r;IJTtpl(Cl, C2) = <_av1>
r;IJTtm(Cl, C2) = <3v1> + <av2>
multy, (Ci, Go) = (—ay,) + h

S22 mult, (G, G) =3 h

Corollary: Quadratically enriched Bézout for tropical curves

Assume di +dr =1 mod 2, then

— d; - d
Z multp(Cl,C2)= 12 2

peCiNG

- h € GW(k)
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Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume di +drb =1 mod 2, then

Z n/‘1\u|/tp(C1, C2) =

peCGiNG

dléd2 - h € GW(k).

If dy + d, =1 mod 2 then there are no odd points on the
boundary of A4, td,.

1819



A
quadratically
enriched
Bézout
theorem for
tropical curves

Sabrina Pauli

Enriched

tropical curves

Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume di +drb =1 mod 2, then

Z n/‘1\u|/tp(C1, C2) =

peCGiNG

dléd2 - h € GW(k).

If dy + d, =1 mod 2 then there are no odd points on the
boundary of A4, td,.

Let v be a lattice point in the interior of Ay tq,. Then

1819



A
quadratically
enriched
Bézout
theorem for
tropical curves

Sabrina Pauli

Enriched
tropical curves

Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Assume di +drb =1 mod 2, then

S multy(GL G) = % -h e GW(k).

peCGiNG

If dy + d, =1 mod 2 then there are no odd points on the
boundary of A4, td,.

Let v be a lattice point in the interior of Ay tq,. Then

# parallelograms corresponding to an intersection with
vertex v is even.
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Corollary: Quadratically enriched Bézout for tropical curves

(Jaramillo Puentes - P.)

Sabrina Pauli . d o d
> multy(G, G) = % - h € GW(k).

peCGiNG

If dy + d, =1 mod 2 then there are no odd points on the
boundary of A4, td,.

Enriched
tropical curves

Let v be a lattice point in the interior of Ay tq,. Then

# parallelograms corresponding to an intersection with
vertex v is even.

#{P : v vertex of P, ep(v) = +1}
= #{P : v vertex of P, ep(v) = —1}

Now the relation (a,) + (—a,) = h in GW(k) implies the
corollary.
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m Can define enriched tropical hypersrufaces in any dimension ~~
enriched tropical Bézout (not just for curves) = new proof of
Bézout's theorem enriched in GW(k)

m Can count intersections in any toric variety ~» enriched
Bernstein-Kushnirenko theorem.

m Can also say something about the possible counts in
non-relatively orientable case (e.g. when d; + d» =0 mod 2).

THANK YOU!
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