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My research

Example: Lines on a smooth cubic surface

#complex lines = 27 (Cayley-Salmon 1849)

signed count of real lines = 3 (Segre 1942)

over an arbitrary field k (Kass-Wickelgren
2017)

15h1i+ 12h�1i 2 GW(k)

27 3

signrank

This is independent of the choice of smooth
cubic surface.

Figure: Clebsch
cubic surface 1

1
Model in the collection of mathematical models and instruments, Georg-August-Universität Göttingen.

By Oliver Zauzig. Published under CC BY-SA 3.0 on universitaetssammlungen.de
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The Grothendieck-Witt ring of a field k

Let k be a field of characteristic 6= 2.

Definition: Grothendieck Witt ring of k

GW(k) := group completion of semi-ring of isometry classes of
non-degenerate quadratic forms over k, �, ⌦

generators: hai := [ax2] for a 2 k⇥/(k⇥)2

relations:

1 hai+ hbi = ha+ bi+ hab(a+ b)i for a, b, a+ b 2 k⇥

2 haihbi = habi for a, b 2 k⇥

3 hai+ h�ai = h1i+ h�1i =: h for a 2 k⇥

Example

C⇥/(C⇥)2 ⇠= {1}
GW(C) ⇠= Z

Example

F⇥
p /(F⇥

p )
2 ⇠= {1, a}

GW(Fp) ⇠= Z[hai]
(hai2�1,2hai�2)

Example

R⇥/(R⇥)2 ⇠= {±1}
GW(R) ⇠= Z[C2]

Example

Q⇥
p /(Q⇥

p )
2 ⇠= {1, a, p, pa}

GW(Qp) ⇠= GW(Fp)�GW(Fp)

(h,�h)
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My research

Enumerative geometry: Count of solutions to geometric
questions (k = k̄), e.g. number of lines on a smooth cubic
surface = 27

A1-enumerative geometry: give enumerative results over an
arbitrary field k valued in GW(k), i.e. a quadratic form, e.g.
15h1i+ 12h�1i 2 GW(k)

Input comes from A1-homotopy theory/motivic homotopy
theory = homotopy theory on algebraic varieties over k
(Morel-Voevodsky)

A powerful tool to solve problems in enumerative geometry is to
use tropical geometry: tropicalalization turns algebraic varieties
into polytopes. This allows to solve problems in enumerative
geometry using merely combinatorics.

Today: We use tropicalization for a problem in A1-enumerative
geometry.
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Bézout

theorem for

tropical curves

Sabrina Pauli

A1
-

enumerative

geometry
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Generalizations

Bézout’s theorem for curves over di↵erent fields

k = C
C1 = V (F1) ⇢ P2

C, d1 = deg F1

C2 = V (F2) ⇢ P2

C, d2 = deg F2

Bézout’s theorem for curves over k = C
X

p2C1\C2

1 = d1 · d2

Today all intersections are transverse.

deg 2

deg 3
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Bézout

theorem for

tropical curves

Sabrina Pauli

A1
-

enumerative

geometry
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Bézout’s theorem for curves over di↵erent fields

k = R
C1 = V (F1) ⇢ P2

R, d1 = deg F1

C2 = V (F2) ⇢ P2

R, d2 = deg F2

Bézout’s theorem for curves over k = R

If d1 + d2 ⌘ 1 mod 2, then

X

p2C1\C2

sign(det Jac(F1,F2)(p)) = 0.

deg 2

deg 3
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Bézout for

curves

Enriched

tropical curves

Generalizations
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Bézout’s theorem for curves over di↵erent fields

k = arbitrary
C1 = V (F1) ⇢ P2

k , d1 = deg F1

C2 = V (F2) ⇢ P2

k , d2 = deg F2

Bézout’s theorem for curves over k (McKean 2021)

If d1 + d2 ⌘ 1 mod 2, then

X

p2C1\C2

Trk(p)/khdet Jac(F1,F2)(p)i =
d1 · d2

2
· h 2 GW(k).

Here, TrL/khai is the quadratic form

L
hai��! L

TrL/k���! k

for a finite separable field extension L/k .
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Bézout

theorem for

tropical curves

Sabrina Pauli

A1
-

enumerative

geometry
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The field of Puiseux series

Definition (the field of Puiseux series over k)

k{{t}} :=
[

n�1

k((t
1

n ))

={a0tq0 + a1t
q1 + . . . |ai 2 k ,

qi 2 Q have a common denominator and q0 < q1 < . . .}

Lemma (Markwig-Payne-Shaw)

GW(k{{t}}) ⇠= GW(k)

Proof.

1 have bijection k{{t}}⇥/(k{{t}}⇥)2 ⇠= k⇥/(k⇥)2 defined by
a0tq0 + a1tq1 + . . . 7! a0

2 this defines an isomorphism ha0tq0 + . . .i 7! ha0i (respects the
relations in the Grothendieck-Witt rings)

8 / 19
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Definition (the field of Puiseux series over k)

k{{t}} :=
[

n�1

k((t
1

n ))

={a0tq0 + a1t
q1 + . . . |ai 2 k ,

qi 2 Q have a common denominator and q0 < q1 < . . .}

Lemma (Markwig-Payne-Shaw)

GW(k{{t}}) ⇠= GW(k)

Proof.

1 have bijection k{{t}}⇥/(k{{t}}⇥)2 ⇠= k⇥/(k⇥)2 defined by
a0tq0 + a1tq1 + . . . 7! a0

2 this defines an isomorphism ha0tq0 + . . .i 7! ha0i (respects the
relations in the Grothendieck-Witt rings)
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Tropicalization

Let
F (x , y) = a(t)x + b(t)y + c(t) 2 k{{t}}[x , y ]

with

a(t) = a0t
qa0 + a1t

qa1 + . . .

b(t) = b0t
qb0 + b1t

qb1 + . . .

c(t) = c0t
qc0 + c1t

qc1 + . . .

Want to find
x(t) = x0t�qx0 + . . . , y(t) = y0t�qy0 + . . . 2 k{{t}} such that

0 = F (x(t), y(t)) = a0x0t
qa0�qx0 + h.o.t.

+ b0y0t
qb0�qy0 + h.o.t.

+ c0t
qc0 + h.o.t.

This can be solved exactly when

(qa0 � qx0 , qb0 � qy0 , qc0)

is attained at least twice  tropical line.

qx0

qy0
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Tropicalization

F (x , y) =
P

aij(t)x iy j 2 k{{t}}[x , y ] of degree d � 1 with
aij(t) = aij,0tqij,0 + . . . 2 k{{t}} has a zero
(x(t) = x0t�qx0 + . . . , y(t) = y0t�qy0 + . . .) exactly when

max
ij

(iqx0 + jqy0 � qij,0)

is attained twice.

We call the locus where the maximum is attained at least twice
a tropical curve of degree d .

2

Figure: Tropical curves of degree 1, 2 and 3

Observe: degree of a tropical curve = #unbounded edges
pointing to the left, down and to the upper right
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Generalizations

Tropical Curves

F1,F2 2 k{{t}}[x , y ] of degree d1 and d2  tropical curves C1, C2,
p 2 C1 \ C2

Definition (tropical intersection multiplicity)

multp(C1,C2) := # points in {F1 = F2 = 0} that “tropicalize” to p

Bézout for tropical curves (Sturmfels)

Let C1 and C2 be two tropical curves of degree d1 and d2,
respectively. Then

X

p2C1\C2

multp(C1,C2) = d1 · d2.

Example
Example
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Bézout for

curves

Enriched

tropical curves

Generalizations

Tropical Curves

F1,F2 2 k{{t}}[x , y ] of degree d1 and d2  tropical curves C1, C2,
p 2 C1 \ C2

Definition (tropical intersection multiplicity)

multp(C1,C2) := # points in {F1 = F2 = 0} that “tropicalize” to p
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Dual Subdivision

subdivision S of �d := Conv{(0, 0), (d , 0), (0, d)}

tropical curve C dual subdivision S
vertices of C maximal cells in S
edges of C edges of S

components of R2 \ C vertices of S

such that

all inclusions are inverted

dual edges are orthogonal

(0, 0) (2, 0)

(0, 2)

Figure: A tropical conic with its dual subdivision
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Bézout for tropical curves

C1 and C2 tropical curves of degree d1 respectively d2
S dual subdivision of C1 [ C2

Intersection points of C1 and C2  ! Parallelograms in S

Lemma

multp(C1,C2) := Area(dual parallelogram)

Proof of Bézout for tropical curves.

X

p2C1\C2

multp(C1,C2)

= Area(�d1+d2)� Area(�d1)� Area(�d2)

=
(d1 + d2)2

2
� d2

1

2
� d2

2

2
= d1 · d2
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Enriched intersection multiplicity

F1,F2 2 k{{t}}[x , y ]  tropical curves C1,C2, p 2 C1 \ C2

Definition: enriched intersection multiplicity (Jaramillo Puentes - P.)

gmultp(C1,C2) := TrE/k{{t}}(hdet Jac(F1,F2)(z)i) 2 GW(k{{t}})

where z is a zero of F1 and F2 that tropicalizes to p and E is the
k{{t}}-algebra defined by all such z .
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Enriched tropical curves

Definition: Enriched tropical curve (Viro, Markwig-Payne-Shaw,
Jaramillo Puentes-P.)

tropical curve with coe�cients a 2 k⇥/(k⇥)2 assigned to each
component/each vertex in dual subdivision

a10

a01

a00
a20

a02 a11

a10

a01

a00 a20

a02

a11

Figure: enriched tropical conic
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Enriched intersection multiplicity

Say v 2 Z2 is odd if v = (1, 1) 2 (Z/2)2.

Theorem (Jaramillo Puentes - P.)

P = parallelogram dual to p 2 C1 \ C2 in dual subdivision of C1 [ C2

gmultp(C1,C2) =
X

v2V (P) odd

h✏P(v)av i+
Area(P)�#{v 2 V (P) odd}

2
· h

av =coe�cient of the vertex v

✏P(v) =

(
+1 if first C1 then C2

�1 if first C2 then C1

when walking around v inside of P anticlockwise

Example

gmultp(C1,C2) = h�av i

gmultp(C1,C2) + gmultq(C1,C2)
= h�av i+ hav i = h 2 GW(k)
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Quadratically enriched Bézout for tropical curves

gmultp1(C1,C2) = h�av1i

gmultp2(C1,C2) = hav1i+ hav2i

gmultp3(C1,C2) = h�av2i+ h
P3

i=1
gmultpi (C1,C2) = 3 · h

Corollary: Quadratically enriched Bézout for tropical curves

Assume d1 + d2 ⌘ 1 mod 2, then

X

p2C1\C2

gmultp(C1,C2) =
d1 · d2

2
· h 2 GW(k)
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Bézout for

curves

Enriched

tropical curves

Generalizations

Quadratically enriched Bézout for tropical curves
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Proof

Corollary: Quadratically enriched Bézout for tropical curves
(Jaramillo Puentes - P.)

Assume d1 + d2 ⌘ 1 mod 2, then

X

p2C1\C2

gmultp(C1,C2) =
d1 · d2

2
· h 2 GW(k).

Proof.

If d1 + d2 ⌘ 1 mod 2 then there are no odd points on the
boundary of �d1+d2 .

Let v be a lattice point in the interior of �d1+d2 . Then

1 # parallelograms corresponding to an intersection with
vertex v is even.

2 #{P : v vertex of P , ✏P(v) = +1}
= #{P : v vertex of P , ✏P(v) = �1}

Now the relation hav i+ h�av i = h in GW(k) implies the
corollary.
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Bézout for

curves

Enriched

tropical curves

Generalizations

Proof

Corollary: Quadratically enriched Bézout for tropical curves
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Why this is cool

Can define enriched tropical hypersrufaces in any dimension  
enriched tropical Bézout (not just for curves) ) new proof of
Bézout’s theorem enriched in GW(k)

Can count intersections in any toric variety  enriched
Bernstein-Kushnirenko theorem.

Can also say something about the possible counts in
non-relatively orientable case (e.g. when d1 + d2 ⌘ 0 mod 2).

THANK YOU!
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Bézout for

curves

Enriched

tropical curves

Generalizations

Why this is cool

Can define enriched tropical hypersrufaces in any dimension  
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Bézout’s theorem enriched in GW(k)

Can count intersections in any toric variety  enriched
Bernstein-Kushnirenko theorem.

Can also say something about the possible counts in
non-relatively orientable case (e.g. when d1 + d2 ⌘ 0 mod 2).

THANK YOU!

19 / 19



A

quadratically

enriched
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Bézout’s theorem enriched in GW(k)

Can count intersections in any toric variety  enriched
Bernstein-Kushnirenko theorem.

Can also say something about the possible counts in
non-relatively orientable case (e.g. when d1 + d2 ⌘ 0 mod 2).

THANK YOU!

19 / 19


